
Red Hat Device Edge
Deep Dive

Summit Connect 2023: Red Hat Device Edge Deep Dive

2

Agenda
▸ Red Hat’s Approach to Edge

▸ What is Red Hat Device Edge?

▸ Overview of Image Builder + Demo

▸ Deploying a Composed Image

▸ Configuring Greenboot + Demo

▸ Building Applications into Images + Demo

▸ Deploying Microshift + Demo

Summit Connect 2023: Red Hat Device Edge Deep Dive

3

Red Hat’s Approach
to Edge

Edge Core

Device edge Premise edge Access edge Metro edge2 Enterprise Cloud /
Core datacenter

Wireless

Data processing at source
device e.g., mobile app, self

checkout

On premise infra
environment e.g., servers in
back of store or cabinet in

the warehouse

Network access points
through RAN cell sites &

access PoPs1 e.g., wireless
network for data exchange

Major aggregation points
covering traffic from nearby
region e.g., stores sharing

same server footprint

Servers in public/private
cloud & DCs e.g.,
AWS datacenter

Wired

Device edge
Standalone or with local servers

that directly connect
sensors/actuators via

non-internet protocols

End-user premises
edge

Edge tiers on the end-user side
of the last mile access

Service provider edge
Located between the core or
regional datacenters and the

last mile access3

Provider / enterprise
core

"Non-edge" tiers, operated by
public cloud providers, telcos,

or large enterprises

1. Fixed network access equipment that connects from on premise to large aggregation centers; 2. Inclusive of potentially multiple layers of network including ISP
data centers, edge data centers, etc.; 3. Commonly owned and operated by a telco or internet service provider and from which this provider serves multiple
customers; 4. Mostly enterprise-grade
Source: BCG analysis

So what and where is the edge?

4

Refinery
Retail Store

Manufacturing Plant

Point of Sale
HMI
DCN

Retail Store Architecture

Point of Sale

Computer Vision

- AAP: network automation
- RHDE management
- ODF: data aggregation
- Virtualization: legacy
workloads

Back of Store
(Site Premise)

In-store WiFi

Store Network

Intelligent Display

Data Gateway

One Consistent Platform Across the Industrial Site

Computer Vision

Human Machine Interface

- Full IOT Automation:
Network to PLCs

- Management of Device
Edge Deployments

- Legacy and Next Generation
Workload hosting

Red Hat Advanced
Compute Platform

Plant Network

Process
Network

Data Gateway
Distributed Control Node

CONFIDENTIAL designatorAlignment and Leadership of Industry
Direction

Red Hat Advanced
Compute Platform

for Industrials

Red Hat Device
Edge Platform

8

A Next Generation Approach to Industrial Operational Technology
One Open Platform for Deterministic and Non-Deterministic Workloads

Red Hat Industrial Edge Platform

vPLC/
DCSPLM Data

Storage

Low Latency Secure Functional Safety Autonomous SustainableIntelligent

OPC-UA, Sparkplug B

MES/
MOM SCADA PLC/DCNHMIAI/Vision

Process NetworkPlant Network

9

W

Cloud(s) or DC

C W

C

Cluster management and application
deployment

Kubernetes node
control

Non-Highly Available ACP
Lower compute, small site

deployments

Premise EdgeDevice Edge

C W

(Remote) worker nodes
Geographically close,

no premise edge
deployments

Highly Available ACP
Full functionality for

autonomous site
operations

Device Edge platform
Distributed control nodes,

limited compute hardware,
purpose built systems

Control node Worker node C W

4 Cores
16GB RAM

4 Cores
16GB RAM

Worker:
1 Core
8 GB RAM

Control:
 2 Core
 16GB RAM

w/o k8s:
1 Core
2 GB RAM

with k8s:
 2 Core
 2GB RAM

104 devices

104 servers

104 servers 102 clusters

102 clusters

C W

Minimum System
Requirements (per node):

Summit Connect 2023: Red Hat Device Edge Deep Dive

10

Red Hat
Device Edge

Summit Connect 2023: Red Hat Device Edge Deep Dive

11

Flexibility and freedom to run workloads where they’re needed

Regional datacenter

Enterprise edge

Edge server/gateway

Traditional applications

Artificial intelligence/
machine learning

Cloud-native applications

Device Edge Technical Overview

Summit Connect 2023: Red Hat Device Edge Deep Dive

12

* recommended for edge deployments: Red Hat Enterprise Linux for Edge Images, rpm-ostree, immutable, atomic upgrade, over the air flavour of Red Hat Enterprise Linux.

Kubernetes cluster services
Networking | Ingress | Storage | Helm

Kubernetes
Orchestration | Security

Linux for edge (*)
Security | Containers | VMs
Install | Over-the-air-updates
Monitoring | Logging

Physical | Virtual | Cloud | Edge

M
ic

ro
Sh

ift

k8s workload k8s operators VMs

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/composing_installing_and_managing_rhel_for_edge_images/index

Red Hat Enterprise Linux for Edge

Summit Connect 2023: Red Hat Device Edge Deep Dive

13

Ensured stability and deployment flexibility

Quick image generation

Easily create purpose-built OS
images optimized for the
architectural challenges of the edge.

Efficient over-the-air updates

Updates transfer significantly less data
and are optimized for remote sites with
limited or intermittent connectivity.

Edge management

Secure and scale with the benefits of
zero-touch provisioning, fleet health
visibility, and security remediations
throughout the entire lifecycle.

Intelligent rollbacks

Application-specific health checks
detect conflicts and automatically
reverts to last working OS update,
preventing unplanned downtime.

rpm-ostree

Summit Connect 2023: Red Hat Device Edge Deep Dive

14

Immutable OS and stateful config and storage

Transactional updates (A → B model)

▸ OS binaries and libraries (/usr*) are immutable
and read-only.

▸ State (r/w) is maintained in /var and /etc.

▸ No inbetween state during updates.

▸ Updates are staged in the background and
applied upon reboot.

▸ Reboots can be scheduled with maintenance
windows to ensure the highest possible uptime.

a2

Data and apps

a1 a2

Update

Data and apps

a1

Major release

Summit Connect 2023: Red Hat Device Edge Deep Dive

15

Immutable OS and stateful config and storage

a2

Data and apps

a1 a2

Update

Data and apps

a1

Major release

Enables seamless major release upgrades
(Red Hat Enterprise Linux 8→ 9)

▸ Help extend the serviceable life of hardware in
the field.

rpm-ostree

Summit Connect 2023: Red Hat Device Edge Deep Dive

16

* When compared with traditional appliance image updates or individual package management strategies

Efficient over the air (OTA) OS updates
Easy remote device mirroring: transfer only the deltas

Ideal for disconnected, intermittent, or low-bandwidth
(DIL) connections

Transfers significantly less data over the network*

Only transfers updated bits of OS content

Static-deltas can be created to further reduce network usage

Client initiated connections for firewall-friendly experience

Rev a1 Rev a2 Rev a3

Update mirror

Image builder

Remote
site 1

Remote
site 2

Remote
site N

Summit Connect 2023: Red Hat Device Edge Deep Dive

17

Image Builder
Overview + Demo

Summit Connect 2023: Red Hat Device Edge Deep Dive

18

Image builder
Fast image assembly and configuration

Edge profile generates a small,

rpm-ostree image from the latest

Red Hat Enterprise Linux 8.3+

OS contents include:

• @core packages (small base install)

• Podman as the container engine

• Additional RPM content (optional)

19

Summit Connect 2023: Red Hat Device Edge Deep Dive

Image Builder Workflow

Standardize your fleet with image sets to
ensure uniform performance

Red Hat®
Enterprise Linux®

content

(Optional)
third-party

custom content

Configuration New deployment
and upgrade

Standardize
image

20

OS updates at scale with Ansible Collections
infra.osbuild collection

Summit Connect 2023: Red Hat Device Edge Deep Dive

RHEL system

1

Image Builder
2

5

Extracted contents

1 2 36

Red Hat Device Edge
image blueprint

RHEL for Edge
image

3 4

RHEL installer

Web Server
7

9

RHEL
boot.iso image

(downloaded and
available)

8

Use a
Kickstart file

(KS)

Pull Launch
installer

Red Hat Device Edge
images

21

Deploying microshift containers on top of OS at scale
edge.microshift collection

Summit Connect 2023: Red Hat Device Edge Deep Dive

RHEL system

1

Image Builder
2

5

Extracted contents

1 2 36

Red Hat Device Edge
image blueprint

RHEL os image with
Microshift and

application manifests

3 4

RHEL installer

Web Server
7

9

RHEL
boot.iso image

(downloaded and
available)

8

Use a
Kickstart file

(KS)

Pull Launch
installer

Red Hat Device Edge
images

10 Day Two Operations

Summit Connect 2023: Red Hat Device Edge Deep Dive

22

Image Builder Demo
● Image Builder WebUI

● Automating Image Builder with Ansible

Summit Connect 2023: Red Hat Device Edge Deep Dive

23

Deploying Red Hat
Device Edge

24

Summit Connect 2023: Red Hat Device Edge Deep Dive

Zero-touch onboarding

Systems onboard automatically at boot and
can be sent directly to the site

Image
version 2

ISO output
TFTP

PXE/iPXE
HTTP Boot

FDO
Onboarding

GroupSystem/device
hardware

Site(s) Onboard

25

Initial Install Process and Call Home

1
Device is booted from
installation source
(USB/http/uefi)

2
Device installs RHEL
for Edge without
prompt/intervention

3
Device reboots and
calls home to Ansible
EDA

4

Ansible EDA triggers a
workflow in Ansible
Controller with host
information

5

Device calls home to
Controller to create a
host entry in an
Inventory and kick off
provisioning workflow

6

Controller applies
device configuration
and pushes down
edge workload

26

Call Home with Minimal Information
Using Systemd to run on next boot:

[Unit]
Description=Connect to WiFi
After=network.target
ConditionPathExists=!/var/tmp/wifi-connected

[Service]
Type=oneshot
ExecStartPre=/usr/bin/nmcli radio wifi on
ExecStartPre=/usr/bin/sleep 5
ExecStartPre=/usr/bin/nmcli dev wifi rescan
ExecStartPre=/usr/bin/sleep 5
ExecStartPre=/usr/bin/nmcli dev wifi list
ExecStart=/usr/bin/nmcli dev wifi connect lab-wifi password
'example-password'
ExecStopPost=/usr/bin/touch /var/tmp/wifi-connected

[Install]
WantedBy=default.target

[Unit]
Description=Register to Ansible Automation Platform
After=network.target
After=connect-wifi.service
ConditionPathExists=!/var/tmp/aap-registered

[Service]
Type=oneshot
ExecStart=/bin/bash /var/tmp/aap-auto-registration.sh
ExecStopPost=/usr/bin/touch /var/tmp/aap-registered

[Install]
WantedBy=default.target
EOF

A simple curl script:

#!/bin/bash
IP_ADDRESS=\$(nmcli conn show lab-wifi | grep ip_address | awk '{print \$4}')
MAC_ADDRESS=\$(ip addr | grep wlp -A 1 | grep link | awk '{print \$2}' | sed
's/://g')
STUDENT='1'

JSON="{\
\"ip_address\": \"\$IP_ADDRESS\", \
\"other_var\": \"\$OTHER_VAR\", \
\"mac_address\": \"\$MAC_ADDRESS\" \
}"

/usr/bin/curl -H 'Content-Type: application/json' --data "\$JSON"
https://eda.device-edge.redhat-workshops.com/endpoint

Execution Flow:
1. System connects to network (WiFi)
2. System collects connection information
3. System calls home to Ansible EDA
4. Ansible EDA calls workflow with system information
5. Device is onboarded

Summit Connect 2023: Red Hat Device Edge Deep Dive

27

Deploying Red Hat
Device Edge Demo

Summit Connect 2023: Red Hat Device Edge Deep Dive

28

Embedding an
Application into an
Image

29

Our Example Process Control Workload

Note: Our DCN runs the control plane and worker plane on one system

30

Summit Connect 2023: Red Hat Device Edge Deep Dive

Image Builder Workflow

Standardize your fleet with image sets to
ensure uniform performance

Red Hat®
Enterprise Linux®

content

(Optional)
third-party

custom content

Configuration New deployment
and upgrade

Standardize
image

Where the magic happens

31

Embedding an Application Examples

[[containers]] is used to specify container images
that should be embedded into the image by Image
Builder. The images will be available in the default
image storage location for the operating system.
On RHEL, images will be visible by podman using
the podman images command.

Note: If ‘name’ is specified, then the container name will be
re-written, otherwise the image name will match the source.

Using the infra.osbuild collection:

builder_compose_containers:
 - name: mqtt
 source: quay.io/device-edge-workshops/process-control-mqtt:1.0.0
 - name: simulate
 source: quay.io/device-edge-workshops/process-control-simulate:1.0.0
 - name: control
 source: quay.io/device-edge-workshops/process-control-control:1.0.0
 - name: ui
 source: quay.io/device-edge-workshops/process-control-ui:1.0.0

Directly in toml:

[[containers]]
name = “mqtt”
source = "quay.io/device-edge-workshops/process-control-mqtt:1.0.0"

[[containers]]
name = “simulate”
source = “quay.io/device-edge-workshops/process-control-simulate:1.0.0”

[[containers]]
name = “control”
source = “quay.io/device-edge-workshops/process-control-control:1.0.0”

[[containers]]
name = “ui”
source = “quay.io/device-edge-workshops/process-control-ui:1.0.0”

Running a Workload with Podman

32

Summit Connect 2023: Red Hat Device Edge Deep Dive

Kube YAML
podman generate kube [UUID]

apiVersion: v1
kind: Pod
Metadata:
 annotations:
 io.podman.annotations.ulimit:
nofile=524288:524288
 labels:
 app: thirstywilson-pod
 name: thirstywilson-pod
spec:
 containers:
 - image: ubi9/nginx-120
command: [“nginx”]
 args: [“g”, “daemon off;”]
 name: thirstywilson
 ports:
 - containerPort: 8080
 hostPort: 8080
 stdin: true
 tty: true

systemd unit file
podman generate systemd --new [UUID]

[Unit]
Description= nginx container
After=network-online.target

[Service]

Restart=on-failure
ExecStart=/usr/bin/podman run \
--cidfile=%t/%n.ctr-id \
--cgroups=no-conmon \
--rm \
--sdnotify=conmon \
-d \
-p 8080:8080 \
ubi9/nginx-120 nginx -g “daemon off;”

[Install]
WantedBy=multi-user.target

Quadlet
/etc/containers/systemd/nginx.container

[Service]
Restart=always

[Container]
ContainerName=nginx
Image=ubi9/nginx-120
PublishPort=8080:8080
Exec=nginx -g "daemon off;"

[Install]
WantedBy=default.target

33

Embedding an Application Examples
Generated quadlet systemd unit file:

[Install]
WantedBy=default.target

[Unit]
After=network-online.target
SourcePath=/etc/containers/systemd/process-control.kube
RequiresMountsFor=%t/containers

[X-Kube]
Yaml=/etc/containers/systemd/process-control.yaml
PublishPort=1883:1883

[Service]
KillMode=mixed
Environment=PODMAN_SYSTEMD_UNIT=%n
Type=notify
NotifyAccess=all
SyslogIdentifier=%N
ExecStart=/usr/bin/podman kube play --replace
--service-container=true --log-driver passthrough --publish 1883:1883
/etc/containers/systemd/process-control.yaml
ExecStop=/usr/bin/podman kube down
/etc/containers/systemd/process-control.yaml

Note: Quadlet generates files when called at runtime, so generate
the files on a test system before embedding them via Image
Builder.

kube yaml:

apiVersion: v1
kind: Pod
metadata:
 name: process-control
spec:
 containers:
 - name: mqtt
 image: docker.io/library/mqtt:latest
 - name: simulate
 image: docker.io/library/simulate:latest
 - name: control
 image: docker.io/library/control:latest
 - name: ui
 image: docker.io/library/ui:latest
 ports:
 - containerPort: 1881
 hostPort: 1881

Quadlet kube file:

[Install]
WantedBy=default.target

[Unit]
After=network-online.target

[Kube]
Yaml=process-control.yaml # Path to kube yaml
PublishPort=1881:1881 # External ports

34

Embedding an Application Examples

Directly in toml:

[customizations.directories]
path = "/etc/containers/systemd"
mode = "0755"
user = "root"
group = "root"
ensure_parents = false

[customizations.firewall]
ports = “1881:tcp”

[customizations.services]
enabled = ["process-control”]

Using the infra.osbuild collection:

builder_compose_customizations:
 directories:
 - path: /etc/containers/systemd
 mode: '0755'
 user: root
 group: root
 ensure_parent: 'true’
 firewall:
 ports:
 - '1881:tcp'
 services:
 enabled:
 - process-control

Also ensure target directories are created, services are set to start on boot, and firewall ports are allowed

Note: These modifications can be part of an upgraded image, or as part of a new system deployment

Summit Connect 2023: Red Hat Device Edge Deep Dive

35

Embedding an
Application into an
Image Demo

Summit Connect 2023: Red Hat Device Edge Deep Dive

36

Greenboot

Intelligent rollbacks: Greenboot

Summit Connect 2023: Red Hat Device Edge Deep Dive

37

Additional safeguard for application and OS compatibility

Custom health checks can determine if nodes are
functioning properly

▸ Health checks are run during the boot process.

▸ If checks fail, a counter will track the number of
attempts.

▸ In a failure state, the node will use rpm-ostree to
rollback the update.

▸ Examples can include:

○ Basic name resolution

○ Service or container status or health

a2

Data and apps

a1 a2

Update

Data and apps

a1

a1 a2 a1 a2

38

Data and apps Data and apps

b2b1

Podman will automatically roll back containers if
new application versions exit on fail

• Requires use of Podman auto-update

• systemd units are used for managing containers

• --sdnotify=container adds the ability to wait and notify when
the container’s process(s) have started properly

• Podman can generate via:

podman create --name test --label

io.containers.autoupdate=registry [registry]/[image:tag]

podman generate systemd --new test

a2a1

b2b1

a2a1

Update

Intelligent rollbacks: Greenboot
Additional safeguard for application and OS compatibility

39

Creating a Greenboot Application Health Check
Using a simple shell script:

#!/bin/bash

/usr/bin/sleep 20

RETURN_CODE=$(/usr/bin/curl -s -o /dev/null -w '%{http_code}'
http://localhost:1881)

if [$RETURN_CODE = '200']; then
 exit 0;
else
 exit 1;
fi

Now embed in image via file route:

builder_compose_customizations:
 files:
 - path: /etc/greenboot/check/required.d/application-check.sh
 mode: '0755'
 user: root
 group: root
 data: "#!/bin/bash\n\n/usr/bin/sleep 20\n\nRETURN_CODE=$(/usr/bin/curl -s
-o /dev/null -w '%{http_code}' http://localhost:1881)\n\nif [$RETURN_CODE =
'200']; then\n exit 0;\nelse\n exit 1;\nfi"

Tip: Use sed -E ':a;N;$!ba;s/\r{0,1}\n/\\n/g' to convert files into a single line with proper
newlines embedded

- /etc/greenboot/check/required.d contains the health checks that must not fail (if they do, GreenBoot will
initiate a rollback)

- /etc/greenboot/check/wanted.d contains health scripts that may fail. GreenBoot will log that the script
failed, however, it will not rollback.

- /etc/greenboot/green.d contains scripts that should be run after GreenBoot has declared the boot
successful

- /etc/greenboot/red.d contains scripts that should be run after GreenBoot has declared the boot as failed.

Summit Connect 2023: Red Hat Device Edge Deep Dive

40

Greenboot Demo

Summit Connect 2023: Red Hat Device Edge Deep Dive

41

Deploying Microshift
to Run an Embedded
Application

42

Kubernetes cluster services
Networking | Ingress | Storage | Helm

Kubernetes
Orchestration | Security

Linux for edge (*)
Security | Containers | VMs
Install | Over-the-air-updates
Monitoring | Logging

Physical | Virtual | Cloud | Edge

M
ic

ro
Sh

ift

k8s workload k8s operators VMs

Device Edge with MicroShift compared to Openshift

Summit Connect 2023: Red Hat Device Edge Deep Dive

* recommended for edge deployments: Red Hat Enterprise Linux for Edge Images, rpm-ostree, immutable, atomic upgrade, over the air flavour of Red Hat Enterprise Linux.

Kubernetes cluster services
Networking | Ingress | Storage | Helm
Install | Over-the-air updates | Cluster Operators | Operator Lifecycle Manager
Monitoring | Logging | Registry | Authorization | Console | Cloud Integration | VMs

Kubernetes
Orchestration | Security

Linux
Security | Containers

k8s workload k8s operators VMs

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/composing_installing_and_managing_rhel_for_edge_images/index

43

Adding Microshift to a Red Hat Device Edge Image

Adding repositories:

builder_rhsm_repos:
 - "rhocp-4.13-for-rhel-9-x86_64-rpms"
 - "fast-datapath-for-rhel-9-x86_64-rpms"

Adding customizations:

builder_compose_customization:
 firewall:
 ports:
 - '6443:tcp'
 - '1881:tcp'
 services:
 enabled:
 - microshift
 - deploy-pull-secret

The infra.osbuild collection automagically manages repositories (sources) for Image Builder

Adding packages:

builder_compose_packages:
 - microshift
 - microshift-greenboot

These additions get the base platform of Microshift built into the image

Note: Microshift can be added or removed through normal rpm-ostree updates

44

Giving our Embedded Application to Microshift to Run

kustomization:

apiVersion: kustomize.config.k8s.io/v1beta1
kind: Kustomization
namespace: process-control
resources:
 - process-control.yaml

kustomization.yaml has my application
yaml
listed under resources.

Microshift will read /etc/microshift/manifests looking for applications to deploy

Namespace and services:

apiVersion: v1
kind: Namespace
metadata:
 name: process-control

apiVersion: v1
kind: Service
metadata:
 name: mqtt
spec:
 ports:
 - port: 1883
 protocol: TCP
 targetPort: 1883
 selector:
 app: mqtt
 type: NodePort

apiVersion: v1
kind: Service
metadata:
 name: ui
spec:
 ports:
 - port: 1881
 protocol: TCP
 targetPort: 1881
 selector:
 app: ui
 type: NodePort

Deployments:

apiVersion: apps/v1
kind: Deployment
metadata:
 name: mqtt-deployment
spec:
 selector:
 matchLabels:
 app: mqtt
 replicas: 1
 template:
 metadata:
 labels:
 app: mqtt
 spec:
 containers:
 - name: mqtt
 image:
quay.io/device-edge-workshops/process-control-mqt
t:1.0.0
 ports:
 - containerPort: 1883
 name: mqtt-port

Summit Connect 2023: Red Hat Device Edge Deep Dive

45

Deploying Microshift
to Run an Embedded
Application Demo

CONFIDENTIAL designator

V0000000

linkedin.com/company/red-hat

youtube.com/user/RedHatVideos

facebook.com/redhatinc

twitter.com/RedHat

46

Red Hat is the world’s leading provider of enterprise

open source software solutions. Award-winning support,

training, and consulting services make Red Hat a trusted

adviser to the Fortune 500.

Thank you

